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In dental practice there is an increasing need for predictable therapeutic protocols able to regenerate tissues that, due to
inflammatory or traumatic events, may suffer from loss of their function. One of the topics arising major interest in the research
applied to regenerative medicine is represented by tissue engineering and, in particular, by stem cells. The study of stem cells in
dentistry over the years has shown an exponential increase in literature. Adult mesenchymal stem cells have recently been isolated
and characterized from tooth-related tissues and they might represent, in the near future, a new gold standard in the regeneration
of all oral tissues. The aim of our review is to provide an overview on the topic reporting the current knowledge for each class of
dental stem cells and to identify their potential clinical applications as therapeutic tool in various branches of dentistry.

1. Introduction

Anatomical structures of the mouth undergo several phys-
iologic and pathologic modifications which can determine
damages towards both hard and soft tissues [1]. One of
the purposes of the scientific research in medical field is
to provide techniques and materials to repair the loss of
damaged tissues. In recent years a new approach based
on tissue engineering is now adding the current treatment
protocols. Tissue engineering was introduced in the 1990s
and consists of an ensemble of techniques and procedures
aimed at the regeneration of biological tissues [2] based on
a triad derived from the three major components of tissues:
cells, their ECM, and a signalling system [2].

Stem cells are generally defined as clonogenic cells capa-
ble of both self-renewal and multilineage differentiation [3]
and have been identified from threemain sources: embryonic
stem cells, adult stem cells, and induced pluripotent stem cells
[1]. Embryonic stem (ES) cells are pluripotent cells derived
from blastocyst-stage embryos; pluripotent stem cells have
not undergone complete differentiation and retain the capac-
ity to divide into any of the three germ layers (endoderm,
ectoderm, and mesoderm) but not into extraembryonic
tissue [4]. Adult, somatic or postnatal stem cells reside

amongst differentiated cells within a number of organs in the
body where they play a role in tissue maintenance, renewal,
and repair. They are multipotent stem cells and are more
restricted in their differentiation capacity when compared
with embryonic stem cells [1]. Induced pluripotent stem
(iPS) cells are the product of somatic cell reprogramming
to an embryonic-like state through genetic manipulation
[5]. They have been first developed from adult mouse cells
and then from adult human cells [5, 6]. Several types of
adult stem cells have been isolated from teeth (Figure 1),
including dental stem cells (DPSCs) [7], periodontal ligament
stem cells (PDLSCs) [8], stem cells from human exfoliated
deciduous teeth (SHEDs) [9], dental follicle progenitor stem
cells (DFPCs) [10], and stem cells from apical papilla (SCAPs)
[11].

In order to use stem cells in tissue engineering pro-
cedures, the presence of a scaffold and growth factors is
necessary [2]. An ideal scaffold should support the attach-
ment, migration, proliferation, and spatial organization of
cells required for structural and functional replacement of the
target tissue [12]. Growth factors (GFs) are peptide molecules
which transmit signals to control cell behavior and activity
interacting with specific receptors located on the surfaces of
cells [13].
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Figure 1: Dental stem cells’ sources.
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Figure 2: Number of papers dealing with stem cells in dentistry
published during the last 27 years.

In recent years there has been an exponential increase in
the number of publications dealing with stem cells (Figure 2).
The focus of stem cells research in dentistry is the regener-
ation of missing oral tissues like, for example, dentine-pulp
complex, maxillary bone, and periodontal ligament [14]. A
further interest of dentistry towards stem cells is due to the
fact that it is possible to isolate and harvest them from dental
tissues; the oral cavity must be considered as a source of stem
cells as well as a site of application.

The aim of our review of literature was to define various
dental stem cells types and outline their possible modalities
of clinical application for tissue regeneration.

2. Material and Methods

In order to perform our revision we consulted PUBMED
database initially performing several test searches. After-
wards we decided to carry out the ultimate search by entering
“STEM CELL” as main inquiry term, “AND” as default
Boolean operator, and “IN DENTISTRY” as secondary
inquiry term and we added four search filters offered by the
same database. Therefore, review articles were excluded by
the results even if these have been studied for the purpose
of completeness of the research.Then we performed a second
exclusion step by reading articles’ title and abstract and a third
exclusion step by reading original manuscripts. In our work
mainly papers focused on in vivo studies on stem cells in
tissue engineering applications were considered in order to

investigate on the current knowledge about feasible usage of
stem cells as regenerative tool for therapeutic purposes.

Our primary search resulted in a total number of 586
articles including 129 revisions on the subject. We considered
116 papers by reading title and abstract andwefinally included
40 papers by analyzing the complete manuscript content.

3. Results and Discussion

Data extracted from the analysis of the selected articles are
summarized in Table 1.

3.1. DPSCs. Adult human dental stem cells were first iden-
tified and isolated in 2000 by Gronthos et al. [7] from
normal impacted third molars’ pulp and were characterized
as clonogenic and highly proliferative, being able to form in
vitro calcified sporadic nodules [7].

DPSCs are shown to anatomically locate in a perivascular
niche within the pulp tissue [15] and to possess self-renewal
capabilities and multipotent differentiating ability: they can
differentiate in vitro into odontoblasts, adipocytes, neural
cells, osteoblasts, chondrocytes and myoblast-like cells [16–
20]. Interestingly DPSCs have also been reported to show
immunomodulatory properties in vitro and in vivo onmouse
[21]. Although they share several characteristics with bone
marrow mesenchymal stem cells (BMMSCs), DPSCs show
reduced osteogenic and adipogenic potentials in vitro when
compared to BMMSCs [7].

Human DPSCs can also be successfully isolated and
characterized from inflamed pulp tissue [22], from super-
numerary teeth [23] and from natal teeth [24]. Moreover
several studies have isolated and characterized stem cells
and subpopulations of progenitor cells in the dental pulp of
different animal species [25–27].

The banking of DPSCs by cryopreservation in liquid
N2 is clinically possible for future usage providing a good
prospective in future regenerative dental and medical treat-
ment [28, 29]. DPSCs have been successfully isolated from
cryopreserved healthy molar and premolar teeth, as well as
from their undigested dental pulp tissue [30–33] and also
from diseased but vital teeth [34].

DPSCs’ possible employment as therapeutic tool in regen-
erative endodontics is supported by several in vivo studies
which showed that human DPSCs transplanted under the
skin of immunocompromised mice formed pulp/dentin-like
tissue complexes after odontoblastic differentiation [7, 35–
37]. Different scaffolds were used in these studies. Gronthos
et al. used a hydroxyapatite/tricalcium phosphate (HA/TCP)
ceramic powder scaffold [7]. Demarco et al. used Poly-L-
lactic acid (PLLA) scaffolds prepared in pulp chambers of
extracted human third molars using salt crystals or gelatin
spheres as porogen (PLLA/tooth slice scaffold). This study
showed that dentin-related morphogen factors influence the
differentiation of stem cells toward an odontoblast-like cell
phenotype [35]. Prescott et al. and Johnson et al. used a
collagen scaffold and Dentin Matrix Protein-1 (DMP1) [36,
37] which is a growth factor that is primarily found in
dentin and bone and has been implicated in the regulation
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of mineralization processes [38]. A very interesting suitable
scaffold for regenerative endodontics is a self-assembling
peptide hydrogel that can be poured into a pulp chamber
and which self-polymerizes under physiological conditions
to form a solid gel capable of supporting cell growth and
differentiation [39]. Its application is highly attractive from
an endodontic stand-point as a liquid may be expected to
conform more easily to the variable shape of a pulp chamber
than would a solid or even moldable scaffold. Human DPSCs
have been reported to generate pulp-dentin-like complex also
arranged in 3D scaffoldless structures in human root canals
implanted subcutaneously into mice [40].

Animal DPSCs have also been tested in several in vivo
experiments for regenerative endodontics [41–46]. DPSCs
might have possible application in bone regenerative pro-
cedures. Nakamura et al. reported that rat dental pulp cells
have the potential to generate mineralized tissue via the
osteoblastic phenotype, on titanium, in vitro [47]. Some
investigators reported the successful formation of lamellar
bone in vivo by inducing human DPSCs to synthesize bone
tissue in vitro and then transplanting it subcutaneously
into mice, without needing of a scaffold support as the
transplanted fibrous bone was an already formed hard tissue
[48, 49]. Chan et al. used a self-assembling peptide hydrogel
scaffold seeded with DPSC to create mineralised bone-like
tissue pieces containing blood capillaries [50]. DPSCs with a
mature osteogenic phenotype have been reported to be more
responsive to pulsating fluid shear stress than osteogenically
immature DPSCs and produce more bone in vivo suggesting
that DPSCs with a mature osteogenic phenotype might be
preferable for bone tissue engineering, because theymight be
able to perform mature bone cell-specific functions during
bone adaptation to mechanical loading in vivo [51].

Nishino et al. reported a possible application in soft
tissue regenerative medicine for human DPSCs associated
with Basic Fibroblast Growth Factor (b-FGF), which where
shown to accelerate the wound healing of a skin defect of
a mice [73]. A study performed by Khorsand et al. showed
that Dog DPSCs seeded on bovine bone granules possess
periodontium and bone forming ability in periodontal canine
defects [56].

3.2. PDLSCs. Adult stem cells from human periodontal
ligament (PDL) of healthy permanent teeth were first isolated
and characterized in 2004 by Seo et al. [8]. PDLSCs possess
classic characteristics of stem cells (i.e., small size, slow
cellular cycle, and several stem cells markers’ expression)
[8, 74] and show a faster cell growth and superior clonogenic
capabilities compared with BMMSCs [75].

PDLSCs were shown to possess multilineage differentia-
tion ability in vitro into osteoblast-like cells, cementoblast-
like cells, adipocytes, and collagen-forming cells [8, 75, 76]
although their osteogenic potential was found to be lower
than their bone marrow and pulp tissue counterparts in
vitro [8, 75]. PDLSCs have been reported to differenti-
ate into chondrocyte-like cells in chondrogenesis-inducing
media with the addition of Transforming Growth Factor
𝛽3 (TGF-𝛽3) [75] and by adding TGF-𝛽3 and BMP-6 to

the culture [77]. They have also been reported to possess
immunomodulatory functions which might lead to new
possible application fields [78].

PDLSCs have been isolated from inflamed regenerating
periodontal tissue obtained from intrabony defects during
flap surgery and showed similar proliferating and differentia-
tion properties, an increased migratory capacity, and a lower
osteoblastic differentiation ability when compared to healthy
PDLSCs [60, 79]. Stem cells isolated from periodontitis-
affected periodontal tissue were even shown to differentiate
into highly proliferative neural precursors in vitro [80].

Several authors investigated the differences between
PDLSCs isolated in permanent or in deciduous teeth; decid-
uous PDLSCs were found to have a higher proliferative rate
[61, 81] and both cell types display multipotentiality toward
adipocytes, osteoblasts, and chondrocytes with some dif-
ferentiation potential differences among them [82]. Silvério
et al. reported that deciduous PDLSCs have higher ability to
differentiate into adipocyte-like cells, rather than osteoblast-
like cells, compared to permanent PDLSCs [81]. Conversely
Ji et al. reported that deciduous PDLSCs are more apt than
permanent PDLSCs to differentiate into both osteoblasts
and adipocytes under appropriate differentiating in vitro
conditions [61].

Several studies have isolated and characterized stem cells
and subpopulations of progenitor cells in the PDL of different
animal species [58, 83, 84].

FGF-2 was found to increase proliferation of the human
PDLSCs cultures [85]. Moreover it has been shown that TGF-
𝛽1 combined with PDGF-BB and IGF-1 stimulatedmitogene-
sis and enhanced the adhesion of human PDL cells to human
periodontally diseased root fragments treated by scaling and
root conditioning with a citric acid and tetracycline solution
[86]. Swine PDLSCs have been reported to be induced by
BMP-2 to form mineralized nodules and by FGF-2 to form
tube-like vascular structures [84].

Several in vivo studies have been performed on PDLSCs.
Human PDLSCs mixed with HA/TCP ceramic particles have
been shown to be capable of generating a cementum/PDL-
like complex, characterised by a layer of aligned cementum-
like tissues and clearly associated PDL-like tissues, when
transplanted into periodontal defects surgically created in
rats [8]. PDLSCs fromboth healthy and inflamedhumanPDL
mixed with macroporous biphasic calcium phosphate have
been reported to create a typical cementum-like/PDL struc-
ture after transplantation into immunocompromised mice.
However, the degree of cementum regeneration induced
by the inflamed DPSCs was significantly lower than that
induced by healthy PDLSCs [60]. Stem cells from human
deciduous and permanent PDL have been compared in vivo;
deciduous PDLSCs cell sheets combined with dentin blocks
transplanted into the peritoneal cavity of nude mice were
able to generate regularly arranged PDL-like fibrous tissue
that interfaced with new cementum-like tissue formed on
the surface of the dentin block. In contrast, there was only
PDL-like tissue regeneration, without cementum formation,
in transplanted human permanent PDLSC cell sheets [61].

Canine PDLSCs have been reported to generate a
cementum/PDL-like complex if seeded on a HA scaffold and
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transplanted into immunocompromised mice [58] and also
if applied into furcation defects on dog using a collagen
scaffold [57]. Furthermore PDLSCs from dog have been
found to promote bone regeneration mixed with HA/TCP
carriers in surgically created peri-implant saddle-like defects
[59] and supported by bovine bone granules in sinus floor
augmentation on dog [62].

Rat PDLSCs seeded on a gelatin sponge have been
referred to promote bone, PDL, and cementum formation in
vivo on rat [63].

3.3. SHED. SHED represent a distinctive population of mul-
tipotent stem cells from the remnant pulp of exfoliated decid-
uous teeth [9] which derive from a readily accessible tissue
source as human deciduous teeth that are expendable and
routinely exfoliated in childhood with little or no morbidity
to the patient [9, 70, 71].

Although both are extracted from pulp tissue, SHED and
DPSCs exhibit significant differences regarding proliferative
capacity and gene expression, which can potentially affect
their mechanisms of differentiation [87]. SHEDs express
mesenchymal stem cell markers such as DPSCs, but exhibit
a significantly higher positivity for CD146, a multipotency
related marker for mesenchymal stem cells whose expression
denotes less differentiated lineages which may have a higher
differentiating capacity [64]. SHEDs exhibit a higher prolif-
eration rate than DPSCs in vitro [9, 64] and the capacity
to differentiate into several mesenchymal lineages, such
as osteoblasts, odontoblasts, adipocytes, chondrocytes, and
myocytes and expressed neuroprogenitor markers [9, 64, 88,
89]. Stem cells from deciduous teeth pulp are obtained easier
in teeth with advanced resorption process probably because
of the modifications in the ECM performed by the high
quantities of cytokines produced by circulating mononuclear
cells involved in the resorptive phenomenon [90].

In vitro tests showed that SHEDs have a higher capacity
than DPSCs for osteogenic and adipogenic differentiation [9,
64].

In vivo studies carried out by implanting tooth
slice/PLLA scaffolds containing SHED into the subcutaneous
tissue of immunodeficient mice, showed that SHEDs possess
the ability to develop a dental pulp-like tissue and vascular
structures anastomosed with the mouse vasculature. In this
particular study model dentin-derived morphogenic signals
are necessary and sufficient to induce the differentiation
of stem cells into odontoblasts [69, 70]. Another scaffold
model supporting the odontoblastic differentiating ability of
SHED consisted of peptide hydrogel or human recombinant
collagen (rH collagen) injected into human tooth root and
transplanted into mice [66]. The ability of forming pulp-like
tissue in vivo was also reported by using a macroporous
biphasic calcium phosphate scaffold and fibroblast growth
factor-2 (FGF-2) with SHED from inflamed deciduous teeth
[68].

The capacity of osteogenesis of SHED was supported by
in vivo experiments in which SHED, arranged in cell pellets
or mixed with ceramic bovine bone or HA/TCP scaffolds
and transplanted into animalmodels, underwent osteoblastic

differentiation and determined bone tissue formation [9, 64,
67, 71]. SHED showed a higher bone forming ability in vivo
than DPSCs when transplanted in the same experimental
conditions [64]. SHEDs are reported to have significant
immunomodulatory properties in vitro and in vivo when
transplanted in mice [91].

3.4. DFSCs. DFSCs have been isolated and characterized
by Morsczeck et al. from normal human impacted third
molars [10]. They show a typical fibroblast-like morphol-
ogy and express mesenchymal stem cell markers [10].
DFSCs were able to differentiate in vitro in PDL-like struc-
tures or calcified nodules with bone- or cementum-like
attributes [10]. Honda et al. found that DFSCs demonstrate
osteogenic-, adipogenic-, and periodontium-like tissues dif-
ferentiation capacity in vitro after induction but they are
not able to differentiate in chondrocytes [53] while Kémoun
et al. reported that they can differentiate into osteoblasts,
chondrocytes, and adipocytes [92]. DFSCs have also been
successfully cultured into a serum-free medium [93].

DFSCs have been tested in vivo in several studies [10, 52–
55]. Human DFSCs have been transplanted with HA powder
into immunocompromised mice and generated a structure
lining the surfaces of the HA particles, which are comprised
of fibrous or rigid tissue. In this study no cementum or bone
formation was found in histological sections [10]. Pellets of
human dental follicle cells have been reported to be able
to regenerate critical size bone defects in rats’ calvaria [53].
HumanDFSCs cellsmixedwith porous ceramic discs showed
hard tissue-forming potential in immunocompromised rats
[55]. Porcine DFSCs mixed with 𝛽-TCP formed mineralized
bone-like tissue subcutaneously in immunodeficient mice
[54]. BovineDFSCsmixedwithHApowder and transplanted
into immunocompromised mice generated cementum-like
mineralized tissue on the border of HA beads and a ligament-
like fibrous tissue interfaced these areas [52].

3.5. SCAPs. SCAPs were isolated and characterized by
Sonoyama et al. from immature roots of normal human
impacted third molars [11].

They express mesenchymal stem cell markers, embryonic
stem cell markers, and also neurogenic markers [11]. Unlike
DPSCs and other MSCs, SCAPs are telomerase-positive,
a characteristic of embryonic stem cells, which suggests a
notably immature state of differentiation [25, 94]. SCAPs
are able to differentiate into multiple mesenchymal lineages
(osteoblasts, odontoblasts, adipocytes, chondrocytes, and
smooth muscle cells) and neural lineage in vitro [25, 72, 95]
and have higher proliferation ratio and mineralization ability
than DPSCs whereas the adipogenic potential of SCAPs is
weaker than BMMSCs [11, 95]. Similarly to other dental stem
cells, SCAPs have been reported to have immunomodulatory
characteristics [96].

Human SCAPs were transplanted into immunocompro-
mised mice using particles of HA/TCP as a carrier and
generated a typical dentin structure. In the same study
both human SCAPs and PDLSCs have been transplanted
in a minipig model to generate a root/periodontal complex
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Table 2: The possible clinical application fields of dental stem cells
and tissue engineering.

Cell type Possible clinical application

DPSCs (i) Regenerative endodontics
(ii) Bone regeneration

SHED (i) Regenerative endodontics
(ii) Bone regeneration

SCAP (i) Regenerative endodontics
(ii) Bone regeneration

PDLSCs (i) Periodontal regeneration
(ii) Bone regeneration

DFSCs (i) Periodontal regeneration
(ii) Bone regeneration

capable of mimicking a biophysiological root/periodontal
setup in vivo [25]. Another in vivo study reported that human
SCAPs mixed with porous ceramic discs show hard tissue-
forming potential transplanted into immunocompromised
rats [55].Thehuman SCAPs’ ability of generating bone tissues
has been reported in a study in which they were transplanted
into immunodeficient mice with a HA scaffold [72].

4. Conclusion

Dental stem cells are an easily obtainable source of multipo-
tent cells and in vivo studies on animal models confirmed
the significative outcomes of in vitro studies. Our review
reports encouraging results concerning the scientific research
on dental stem cells, particularly regarding their possible
employment, together with scaffolds and GFs, as therapeutic
tool in various branches of dentistry.

According to their differentiation capacity, every oral
stem cell type represents a determined source for a specific
application field (Table 2). The highest number of articles on
this topic focuses on DPSCs, which are good candidates in
regenerative endodontics for pulp organ regeneration into
necrotic or vital but diseased teeth as well as for the induction
of dentin tissue repair among exposed pulp. Even more
recently discovered cells as SCAP and SHED can be suggested
for use in regenerative endodontics. DPSCs, SHED, SCAPs,
PDLSCs, and DFSCs are good candidates for improving
the existing regenerative procedures of craniofacial bone
defects together with already reliable scaffolds and/or GFs.
PDLSCs and DFSCs can be proposed as adjuvants tools for
periodontal regeneration procedures as GTR technique. Fur-
thermore dental stem cells may provide innovative solutions
also in other medical branches thanks to their multipotent
differentiation ability and immunomodulatory properties.

Despite all, at present, there are no in vivo studies on
humans supporting the reliability for therapeutic use and
further evidence is required to demonstrate the possibility of
using dental stem cells as a therapeutic tool for daily clinical
practice.
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